2.5Gbps CWDM SFP Transceiver with DDM/DOM Optional

The ZGSPXX2GL-XXXX pluggable transceiver module is a high performance integrated duplex data link for bi-directional communication. It is designed for Coarse Wavelength Division Multiplexing (CWDM) applications at data rates of 2.125/2.5 Gbps,Such as STM-16/OC-48.They are available in eighteen different CWDM wavelengths. Digital diagnostics functions are available via a two wire serial bus.

Order online下载文档

ZGSPXX2GL-XXX

2.5Gbps CWDM SFP Transceiver with DDM/DOM Optional

Features

Operating data rate up to 2.5/2.67Gbps

Uncooled DFB LD Transmitter

APD Receiver upto 120KM transmission

Single 3. 3V Power supply and TTL Logic

Interface

Duplex LC Connector Interface

18Channels can be selected from 1270-1610 in Wavlength.

Clasp Color Code for different wavelength

Hot Pluggable,Metal enclosure, for Lower EMI

Operating Case Temperature

Standard: 0℃~+70℃

Industrial:-40℃~+85℃

Applications

Coarse WDM application

Metro Access Rings and Point-to-Point networking for Gigabit Ethernet and Fibre Channel

Description

The ZGSPXX2GL-XXXX pluggable transceiver module is a high performance integrated duplex data link

for bi-directional communication. It is designed for Coarse Wavelength Division Multiplexing (CWDM)

applications at data rates of 2.125/2.5 Gbps,Such as STM-16/OC-48.They are available in eighteen

different CWDM wavelengths. Digital diagnostics functions are available via a two wire serial bus.

Absolute Maximum Ratings

Parameter

Symbol

Min.

Typ.

Max.

Unit

Storage Temperature

Ts

-40

 

85

oC

Supply Voltage

VCC

0

 

3.6

V

 

Recommended Operating Conditions

Parameter

Symbol

Min.

Typ.

Max.

Unit

Ambient Operating Temperature

TA

0

 

70

oC

Supply Voltage

VCC

 3.14

3.3

 3.46

V

Data Rate

STM-16/OC-48

 

 

2.5

 

 

2 FC

2.125

Total Supply Current

Icc

 

 

300

mA

 


PERFORMANCE SPECIFICATIONS - ELECTRICAL

Parameter

Symbol

Min.

Typ.

Max.

Unit

Notes

TRANSMITTER

CML/PECL Inputs (Differential)

Vin

400

 

2500

mVpp

AC coupled inputs

Input Impedance (Differential)

Zin

85

100

115

ohms

 

Tx_DISABLE Input Voltage - High

 

Vcc–1.3

 

Vcc

V

 

Tx_DISABLE Input Voltage - Low

 

 

Vee

 

Vee+ 0.8

V

 

Transmit Disable Assert Time

 

 

 

10

ms

 

Tx_FAULT Output Voltage -- High

 

 

Vcc-0.5

 

Vcc+0.3

V

Io = 400μA; Host Vcc

Tx_FAULT Output Voltage -- Low

 

0

 

0.5

V

Io = -4.0mA

RECEIVER

CML Outputs (Differential)

Vout

400

800

1200

mVpp

AC coupled outputs

Output Impedance (Differential)

Zout

85

100

115

ohms

 

Rx_LOS Output Voltage - High

 

Vcc-0.5

 

Vcc+0.3

V

lo = 400μA; Host Vcc

Rx_LOS Output Voltage - Low

 

Vee

 

Vee+0.5

V

lo = -4.0mA

Data output rise time

Tr

 

 

260

ps

20 – 80 %

Data output fall time

Tf

 

 

260

ps

20 – 80 %

Total Jitter

TJ

 

 

0.43

UI

Measured with 27 - 1 PRBS

 

 

 

 

 

 

 

 

 

 

 

OPTICAL SPECIFICATIONS

Parameter

Symbol

Min.

Typical

Max.

Unit

9μm Core Diameter SMF

ZGSPXX2GL-40XX

 

 

40

 

KM

ZGSPXX2GL-80XX

 

80

 

ZGSPXX2GL-120XX

 

120

 

Data Rate

 

 

2.5

 

Gbps

Transmitter

Centre Wavelength

λC

X-6.5

CWDM

X+6.5

nm

Spectral Width (-20dB)

Δλ

 

 

1

nm

Average Output Power

ZGSPXX1GL-40XX

P0ut

0

 

5

dBm

ZGSPXX1GL-80XX

0

 

5

ZGSPXX1GL-120XX

3

 

7

Extinction Ratio

EX

8.5

 

 

dB

Output Optical Eye

IUT-T G.957 Compliant

Data Input Swing Differential

VIN

500

 

2000

mV

Input Differential Impedance

ZIN

90

100

110

Ω

TX Disable

Disable

 

2.0

 

Vcc+0.3

V

 

Enable

0

 

0.8

TX_Fault

Fault

 

2.0

 

VCC+0.3

V

Normal

0

 

0.8

TX_Disable Assert Time

t_off

 

 

10

?s

Receiver

Centre Wavelength

λC

1260

 

1620

nm

Receiver Sensitivity

ZGSPXX2GL-40XX

PIN

 

 

-18

dBm

ZGSPXX2GL-80XX

APD

 

 

-28

ZGSPXX2GL-120XX

 

 

-34

Receiver Overload

Pmax -PIN

-3

 

0

dBm

Pmax -APD

-9

Rise/Fall Time

Tr/tf

 

 

2.2

ns

LOS De-Assert

PIN

LOSD

 

 

-19

dBm

APD

-30

LOS Assert

PIN

LOSA

-35

 

 

dBm

APD

-40

1 “XX” can be specified by the customer. The current available wavelengths are 18 wavelength from

1270-1610nm, each Step 20nm.

2  The following table is various colour of CWDM 18 Channel Wavelength.

Band

Latch Colour

Wavelength

Min.

Type

Max

O-BAND

Calamine blue

1264.5

1270

1276.5

Peach

1284.5

1290

1296.5

Blue

1304.5

1310

1316.5

YellowGreen

1324.5

1330

1336.5

Navy Blue

1344.5

1350

1356.5

E-BAND

Pink

1364.5

1370

1376.5

Olive

1384.5

1390

1396.5

Blue

1404.5

1410

1416.5

Cream

1424.5

1430

1436.5

SeaGreen

1444.5

1450

1456.5

S-BAND

Gray

1464.5

1470

1476.5

Violet

1484.5

1490

1496.5

Blue

1504.4

1510

1516.5

Green

1524.5

1530

1536.5

C-BAND

Yellow

1544.5

1550

1556.5

L-BAND

Orange

1564.5

1570

1576.5

Red

1584.5

1590

1596.5

Brown

1604.5

1610

1616.5

 

 

SFP Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.

Name FUNCTION Plug Seq. Notes

1

VeeT

Transmitter Ground

1

 

2

TX Fault

Transmitter Fault Indication

3

Note 1

3

TX Disable

Transmitter Disable

3

Note 2, Module disables on high or open

4

MOD-DEF2

Module Definition 2

3

Note 3, Data line for Serial ID.

 

5

MOD-DEF1

Module Definition 1

3

Note 3, Clock line for Serial ID.

6

MOD-DEF0

Module Definition 0

3

Note 3, Grounded within the module.

7

Rate Select

Not Connect

3

Function not available

8

LOS

Loss of Signal

3

Note 4

9

VeeR

Receiver Ground

1

Note 5

10

VeeR

Receiver Ground

1

Note 5

11

VeeR

Receiver Ground

1

Note 5

12

RD-

Inv. Received Data Out

3

Note 6

13

RD+

Received Data Out

3

Note 7

14

VeeR

Receiver Ground

1

Note 5

15

VccR

Receiver Power

2

3.3 ± 5%, Note 7

16

VccT

Transmitter Power

2

3.3 ± 5%, Note 7

17

VeeT

Transmitter Ground

1

Note 5

18

TD+

Transmit Data In

3

Note 8

19

TD-

Inv. Transmit Data In

3

Note 8

20

VeeT

Transmitter Ground

1

Note 5

Notes:

1) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor on the host

board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind.

 Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module

 with a 4.7 – 10 K Ω resistor. Its states are:

Low (0 – 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K – 10KΩresistor on

the host board. The pull-up voltage shall be VccT or VccR (see Section IV for further details). Mod-Def 0 is grounded

by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial

ID Mod-Def 2 is the data line of two wire serial interface for serial ID

4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor. Pull

up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the

worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state,

 the output will be pulled to < 0.8V.

5) VeeR and VeeT may be internally connected within the SFP module.

6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be

terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not

required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 –

1000 mV single ended) when properly terminated.

7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP

connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown

below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage

at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot

plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the

steady state value. VccR and VccT may be internally connected within the SFP transceiver module.

 

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω

differential termination inside the module. The AC coupling is done inside the module and is thus not

required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200mV

single-ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600mV

 single-ended) be used for best EMI performance.

Digital Diagnostic Memory Map

EEPROM Serial ID Memory Contents

Accessing Seiral ID Memory uses the 2 wire address 1010000X(A0). Memory Contents of Serials ID are Shown in Table 1.

Table 1  EEPROM Memory Contents

Data Address

Size (Bytes)

Name of Field

Contents (Hex)

Description

BASE ID FIELDS

0

1

Identifier

03

SFP

1

1

Ext.Identifier

04

SFP function is defined by Serial ID

2

1

Connector

07

LC Connector

3-10

8

Transceiver

00 00 00 02 12 00 0D 01

Transmitter Code

11

1

Encoding

03

NRZ

12

1

BR,Nominal

19

Data Rate 2.5Gbps

13

1

Reserved

00

 

14

1

Length(9um) km

28/3C/50/78

Transmitte distance

15

1

Length (9um) 100m

00/00/00/00

16

1

Length(50um) 10m

00

17

1

Length (62.5um) 10m

00

18

1

Length (Copper)

00

 

19

1

Reserved

00

 

20-35

16

Vendor Name

46 49 42 45 52 50 4F 4E 20 20 20 20 20 20 20 20

“FIBERPON” (ASCII)

36

1

Reserved

00

 

37-39

3

Vendor OUI

00 00 00

IEEE ID Registered

40-55

16

Vendor PN

46 50 67 50 88 88 32 47 4C 2D 58 58 44 49 20 20

“ZGSPXX2GL-XXDI” (ASCII)

56-59

4

Vendor Rev.

31 2E 30 20

“1.0” (ASCII)

60-61

2

Wavelength

XX XX

18CH CWDM

62

1

Reserved

00

 

63

1

CC_BASE

xx

Check Sum for Base ID Fields

EXTENDED ID FIELDS

64-65

2

Options

00 1A

Tx_disable,Tx_Fault and loss of signal implented

66

1

BR, Max

00

 

67

1

BR, Min

00

 

68-83

16

Vendor SN

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

Serial Numuber of Transceivers (ASCII)

84-91

8

Date Code

xx xx xx xx xx xx 20 20

Date Code (Year/Month/Day)

92

1

Diagnostic Monitoring Tye

68

Digital diagnostic monitoring,”Internally Calibrated” is implemented

93

1

Enhanced Options

B0

Optional alarm/warn flags Implemented for all monitored quantities, Optional Soft Tx_Fault monitoring implemented, Optional Soft Rx_Los monitoring implemented

94

1

SFF_8472 Compliance

01

For SFF-8472 Rev.9.3

95

1

CC_EXT

xx

Check Sum for Extended ID Fields

VENDOR SPECIFIC ID FIELDS

96-127

32

Vendor Specific

Read Only

Depends on customer information

128-255

128

Reserved

Read Only

Filled by Zero

 

Diagnostic Monitor Functions

Diagnostic Monitor Functions interface uses the 2 wire address 1010001X(A2). Memory Contents of Diagnostic

 Monitor Functions are shown in Table 2.

Table 2. DDM/DOM Functions

Data Address

Field Size (Bytes)

Name

Contents(Hex) and Description

Alarm and Warning Thresholds

00-01

2

Temperature High Alarm

“64 00” Set to 100 ℃

02-03

2

Temperature Low Alarm

“D3 00” Set to -45 ℃

04-05

2

Temperature High Warning

“5A 00” Set to 90 ℃

06-07

2

Temperature Low Warning

“”D8 00” Set to -40 ℃

08-09

2

Vcc High Alarm

“8C A0” Set to 3.6 V

10-11

2

Vcc Low Alarm

“75 30” Set to 3.0 V

12-13

2

Vcc High Warning

“88 E8” Set to 3.5 V

14-15

2

Vcc Low Warning

“79 18” Set to 3.1 V

16-17

2

Bias High Alarm

“88 B8” Set to 70mA

18-19

2

Bias Low Alarm

“03 E8” Set to 2mA

20-21

2

Bias High Warning

“75 30” Set to 60mA

22-23

2

Bias Low Warning

“05 DC” Set to 3mA

24-25

2

Tx Power High Alarm

“XX XX” Measurement Plus 2dB

26-27

2

Tx Power Low Alarm

“XX XX” Measurement Minus 2dB

28-29

2

Tx Power High Warning

“XX XX” Measurement Plus 1dB

30-31

2

Tx Power Low Warning

 “XX XX” Measurement Minus 1dB

32-33

2

Rx Power High Alarm

Overload input optical power

34-35

2

Rx Power Low Alarm

Maximum receiver sensitivity

36-37

2

Rx Power High Warning

Overload input power minus 3dB

38-39

2

Rx Power Low Warning

Maximum receiver sensitivity plus 3dB

40-55

16

Reserved

 

Calibration Constants

56-59

4

Rx_Power(4)

“00 00 00 00” Set to Zero for Internally Calibrated devices

60-63

4

Rx_Power(3)

“00 00 00 00” Set to Zero for Internally Calibrated devices

64-67

4

Rx_Power(2)

“00 00 00 00” Set to Zero for Internally Calibrated devices

68-71

4

Rx_Power(1)

“3F 80 00 00” Set to Zero for Internally Calibrated devices

72-75

4

Rx_Power(0)

“00 00 00 00” Set to Zero for Internally Calibrated devices

76-77

2

Tx_I ( Slope )

“01 00” Set to 1 for Internally Calibrated devices

78-79

2

Tx_I (OffSet)

“00 00” Set to Zero for Internally Calibrated devices

80-81

2

Tx Power (Slope)

“01 00” Set to 1 for Internally Calibrated devices

82-83

2

Tx Power (Offset)

“00 00” Set to Zero for Internally Calibrated devices

84-85

2

Temp.(Slope)

“01 00” Set to 1 for Internally Calibrated” devices

86-87

2

Temp.(Offset)

“00 00” Set to Zero for Internally Calibrated devices

88-89

2

Vcc (Slope)

“01 00” Set to 1 for Internally Calibrated devices

90-91

2

Vcc (Offset)

“00 00” Set to Zero for Internally Calibrated devices

92-94

3

Reserved

“00 00 00”

95

1

Check Sum

Check Sum bytes of “0-94”

Real Time Diagnostic Monitor Interface

96-97

2

Temperature (MSB, LSB)

Yield a 16-bit A/D (See table 3.1)

98-99

2

Supply Voltage (MSB, LSB)

Yield a 16-bit A/D (See table 3.1)

100-101

2

TX Bias Current (MSB,LSB)

Yield a 16-bit A/D (See table 3.1)

102-103

2

Tx Optical Power(MSB,LSB)

Yield a 16-bit A/D (See table 3.1)

104-105

2

Rx Received Power (MSB,LSB)

Yield a 16-bit A/D (See table 3.1)

106-109

4

Reserved

 

110

1

Logic Status

See Table 2.2

111

1

A/D Conversion Updates

See Table 2.2

112-119

8

Alarm and Warning Flags

See Table 2.2

Vendor Specific

120-122

3

Vendor Specific

Don’t Access

123-126

4

Password Entry

Write Only

127

1

Table Select Byte

Write / Read

128-247

120

User Writable EEPROM

Write / Read

248-255

8

Vendor Specific

Don’t Access

The measured values located at bytes 96-105(in the 2 wire address 0xA2) are raw A/D values(16-bit integers)

of transceiver temperature,supply voltage,laser bias current,laser optical output power and receiver power.

The digital value conversions are updated every 13ms(nominal) or 20ms(Max) in rotation.After getting digital value,

each measurement could be obtained by multiplying digital value by LSB 

Table 2.1 Real Time Diagnostic Monitor Value

A2H Byte 96 (Temperature MSB)

A2H Byte 97 (Temperature LSB)

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Sign

26

25

24

23

22

21

20

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

When the value of Temp. @ D7 MSB = “0”, 

Real Temp. (Value) = TemperatureMSB   (Digital Value) + TemperatureLSB   (Digital Value)

TemperatureLSB = (D7LSB X 1/2 ) + (D6lSB X 1/4 )+ (D5LSB X 1/8 )+ (D4LSB X 1/16 )+ (D3LSB X 1/32 ) +

(D2LSB X 1/64 )+ (D1LSB X 1/128 )+ (D0LSB X 1/256 )

Else Temp.(Value) @ D7MSB = “1” ,

Value of Temp. @ MSB & LSB will be negating the currently value (e.g. “0” convert to “1”, “1” convert to

“0” ).  Then, the Value after negating, Plus “1” @ D0LSB , counting step by step, there will be generating a

new Value @ Temp.MSB  & Temp. LSB ;

Finally go to the situation above mentioned while Temp. @ D7 MSB = “0”, 

Vcc=Vcc(Digtial Value) X Vcc LSB = Vcc (Digital Value) X 100 uV

Tx Bias Current = Tx Bias Current (      Digital Value) X Tx BiasLSB = Tx Bias Current (       Digital Value) X 2uA

Tx Power = Tx Power (Digital Value) x Tx PowerLSB = Tx Power (Digital Value) X 0.1uW

Rx Power = Rx Power (Digital Value) x Rx PowerLSB = Rx Power (Digital Value) X 0.1uW

Table 2.2  Logistic Status, AD Conversion Updates & Alarm/Warning Flag Bits

Address

Bits

Name

Description

110

7

Tx Disable State

State of Tx disable (1) and enable (0)

110

6

Soft Tx Disable

Not Implemented

110

5-3

Reserved

 

110

2

Tx Fault State

Tx Failsure state (1); Normal State (0)

110

1

LOS

0=Optical Singal detected;
1= no optical signal detected

110

0

Data Ready Bar

Not Implemented

111

7-0

Reserved

Reserved

112

7

Temp. High Alarm

Set when internal temperature exceeds high alarm level.

112

6

Temp. Low Alarm

Set when internal temperature below low alarm level.

112

5

Vcc High Alarm

Set when internal supply voltage exceeds high alarm level.

112

4

Vcc Low Alarm

Set when internal supply voltage below low alarm level.

112

3

Tx Bia High Alarm

Set when Tx Bias current exceeds high alarm level

112

2

Tx Bias Low Alarm

Set when Tx Bias current below low alarm level

112

1

Tx Power High Alarm

Set Tx Power exceeds high alarm level

112

0

Tx Power Low Alarm

Set Tx Power below low alarm level

113

7

Rx Power High Alarm

Set when Received power exceeds high alarm level

113

6

Rx Power Low Alarm

Set when received power is below low alarm level

113

5-0

Reserved Alarm

 

114-115

All

Reserved

 

116

7

Temp. High Warning

Set when internal temperature exceeds high warning level.

116

6

Temp. Low Warning

Set when internal temperature below low warning level.

116

5

Vcc High Warning

Set when internal supply voltage exceeds high warning level.

116

4

Vcc Low Warning

Set when internal supply voltage below low warning level.

116

3

Tx Bias High Warning

Set when Tx Bias current exceeds high warnng level

116

2

Tx Bias Low Warning

Set when Tx Bias current below low warning level

116

1

Tx Power High Warning

Set Tx Power exceeds high warning level

116

0

Tx Power Low Warning

Set Tx Power below low warning level

117

7

Rx Power High Warning

Set when Received power exceeds high warning level

117

6

Rx Power Low Warning

Set when received power is below low warning level

117

5-0

Reserved Warning

 

118-119

All

Reserved

 

 

Recommend Circuit Schematic

 

Mechanical Specifications

 

Ordering information

Part No.

Data Rate

Laser

Receiver

Distance

Interface

DDM

Temp.

ZGSPXX2GL-40

2.5Gbps

DFB

PIN-TIA

40Km

LC

NO

C

ZGSPXX2GL-40DI

2.5Gbps

DFB

PIN-TIA

40Km

LC

YES

I

ZGSPXX2GL-60DI

2.5Gbps

DFB

APD-TIA

60Km

LC

YES

I

ZGSPXX2GL-80D

2.5Gbps

DFB

APD-TIA

80Km

LC

YES

C

ZGSPXX2GL-120D

2.5Gbps

DFB

APD-TIA

120Km

LC

YES

C

ZGSPXX2GL-120DI

2.5Gbps

DFB

APD-TIA

120Km

LC

YES

I

* I--- Industrial operating temperature

*C--- Commercial Temperature

* D--- DDM / DOM

*”XX”---- 18CH CWDM Wavelength from 1270-1610 (or 1271-1611)

        E.g. XX=27,29,31,33,35,37,39……47,49,51,53,55,57,59,61

* CWDM Link Budget 40KM (17-18dB), 80KM (27-28dB), 120KM (34dB), 150KM (40-41dB)

 

var tq_acd=""; var tq_adminid="9420003"; var tq_auto_invit_delay="0"; var tq_backimage=""; var tq_bad_click_times="5"; var tq_bottom_img=""; var tq_bottom_tips=""; var tq_bottom_url=""; var tq_click_interval="1"; var tq_color="2"; var tq_department_id="-1"; var tq_displaytype="100"; var tq_down_img=""; var tq_down_url=""; var tq_encode=""; var tq_float_html=""; var tq_float_layout_cfg='{"img_ext":"","term":{"img":"","h":""},"head":{"w":"","img":""},"body":{"img":"","margin":"","h":"","sort":"0"},"down":{"img":"","tip":"","herf":"","disp":""},"btm":{"img":"","tip":"","herf":"","disp":""},"icoon":{"img":""},"icooff":{"img":""},"on":{"img":""},"off":{"img":""},"busy":{"img":""},"leave":{"img":""},"onlinestate":{"s":"1"},"title":{"t":"","l":"","h":"","w":""},"close":{"t":"","r":"","h":"","w":""},"mini":{"s":"1","img":"","disp":"2","expd":"0"}}'; var tq_float_right="-100"; var tq_float_style="2"; var tq_float_type="1"; var tq_global_invite_words=""; var tq_group_bg_img=""; var tq_group_flag="0"; var tq_groupname=""; var tq_id="1633055"; var tq_infocard_url=""; var tq_interval_time_type="2"; var tq_invit_accept_img=""; var tq_invit_accept_img_en=""; var tq_invit_auto_hide_delay="0"; var tq_invit_bg_img=""; var tq_invit_bg_img_en=""; var tq_invit_call_img=""; var tq_invit_call_img_en=""; var tq_invit_close_img=""; var tq_invit_close_img_en=""; var tq_invit_color="2"; var tq_invit_come_times="0"; var tq_invit_domain_show_time="10"; var tq_invit_is_hide_float="0"; var tq_invit_layout_cfg='{"bg_ext":"","btn_ext":"","kefu_ext":"","bg":{"t":"b","l":"r","h":"","w":"","img":"","effect":"slideH"},"bg_top":{"h":""},"bg_btm":{"h":""},"title":{"t":"","l":"","h":"","w":"","disp":"","c":""},"close":{"t":"","l":"","h":"","w":"","disp":""},"words":{"t":"","l":"","h":"","w":"","r":"","b":"","disp":""},"kefu":{"w":"","l":"","t":"","img":"","disp":""},"accept":{"t":"","l":"","h":"","w":"","img":"","disp":""},"message":{"t":"","l":"","h":"","w":"","img":"","disp":""},"call":{"t":"","l":"","h":"","w":"","img":"","disp":""},"refuse":{"t":"","l":"","h":"","w":"","img":"","disp":""}}'; var tq_invit_mode=""; var tq_invit_refuse_img=""; var tq_invit_refuse_img_en=""; var tq_invit_reshow_inteval="15"; var tq_invit_show_time="3"; var tq_invit_sound=""; var tq_invit_style="1"; var tq_invit_title=""; var tq_invit_title_en=""; var tq_is_anti_bad_click="0"; var tq_is_fix_flash="0"; var tq_is_fold_term="0"; var tq_is_global_invite="0"; var tq_is_mask="0"; var tq_is_message_sms="0"; var tq_is_minimess="0"; var tq_is_panel_float="1"; var tq_is_parse_ip="0"; var tq_is_send_mail="0"; var tq_is_update_online_flag="0"; var tq_iscallback="0"; var tq_isnoshowuser=""; var tq_kefuimg_cfg=''; var tq_language="1"; var tq_language_type=""; var tq_middle_img=""; var tq_minimess_color="1"; var tq_minimess_custom_inputs="[]"; var tq_minimess_message_tip=""; var tq_minimess_position="LD"; var tq_minimess_selectable_inputs="message|1||name|0||phone|0|1"; var tq_minimess_style="1"; var tq_minimess_tactic=""; var tq_minimess_title="\u8bbf\u95ee"; var tq_name="TQ\u4ee3\u7801(1)"; var tq_not_reshow="0"; var tq_offline_gif=""; var tq_offline_icon=""; var tq_online_gif=""; var tq_online_icon=""; var tq_page_templete_id=""; var tq_prevent_style="1"; var tq_prevent_time="1"; var tq_prevent_tip=""; var tq_showtime="0"; var tq_sitecount=""; var tq_siteid=""; var tq_sort="0"; var tq_static_offline_img=""; var tq_static_online_img=""; var tq_tactic_id=""; var tq_title=""; var tq_title_en="0"; var tq_top="100"; var tq_type="1"; var tq_up_img=""; var tq_useraccount="1"; var tq_version="20100501"; var tq_welcome_msg=""; var tq_welcome_msg_en=""; var tq_if_tryout="0"; var tq_logoLink='http://mdb.tq.cn/mj/services/logofile/logo/9420003'; var tq_webscreen_url="http://42.121.85.202:8000"; var tq_floatserver_url="http://float2006.tq.cn"; var tq_member_uins ='[{"m":[{"id":"9420003","n":"\\u5b59\\u53cb\\u534e","o":0,"s":"41","t":"tq","w":"\\u5b59\\u53cb\\u534e"},{"id":"2850958080","n":"\\u5b59\\u5148\\u751f","o":"22|28","s":"41","t":"qq","w":""},{"id":"2850958092","n":"\\u949f\\u5148\\u751f","o":"26","s":"41","t":"qq","w":""},{"id":"2850958093","n":"\\u9ec4\\u5148\\u751f","o":"22|28","s":"41","t":"qq","w":""},{"id":"2850958095","n":"\\u5b59\\u5c0f\\u59d0","o":"22|28","s":"41","t":"qq","w":""},{"id":"2850958099","n":"\\u67f4\\u5c0f\\u59d0","o":"22|28","s":"41","t":"qq","w":""}]}]'; var tq_invit_response_uins ='[{"b":"","h":"","m":[{"id":"9420526","n":"\\u5468\\u9009","o":0,"t":"tq","w":"\\u5468\\u9009"},{"id":"9420559","n":"\\u674e\\u5a1c","o":0,"t":"tq","w":"\\u674e\\u5a1c"},{"id":"9420561","n":"\\u9ec4\\u660e\\u751f","o":0,"t":"tq","w":"\\u9ec4\\u660e\\u751f"}],"n":""}]'; document.writeln('